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These abbreviations are used in this manuscript.
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PFTM = picture fuzzy topological multifunction,
PF"S = picture fuzzy upper semi, PF'S = picture fuzzy lower semi,
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PF'AW = picture fuzzy lower almost weakly.
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1. Introduction

Fuzzification is a crucial tool for addressing humanistic systems in real-life problems. The seminal
paper on the fuzzy set (FS) theory was authored by Zadeh in 1965 ( [28]). This theory of FSs has been
widely applied by many scholars. The fuzzy set theory described the positivism of an element ¢ of
a universal set & to a subset K C = by the membership value w, (£), and posited that the negativism
of that element £ € = to the set Kis 1 — w,(£). In [7], Atanassov based his theory of intuitionistic
fuzzy sets (IFSs) on the notion that the negativism @, (¢) of an element £ € = to a subset K C = may
range from [0, 1] and does not need to be the complement of the positivism of that element ¢ € = to K.
The values w, (¢) and @, (€) represent the positivism and negativism of each ¢ € E to K, respectively,
with the condition that 0 < w,(€) + @, (€) < 1. In this way, Atanassov encompassed all the FSs as
a special case of his theory whenever w, (£) + w,(§) = 1. IFSs are more meaningful and applicable
to real-life problems. In [12], Cuong introduced the theory of picture fuzzy sets (PFSs) by adding the
neutralism of an element ¢ € E to the subset K, represented by o, (£). This definition is conditioned
with 0 < w, (¢) + @ (€) + 0,(£) < 1. Then, in the case where o, (£) = O for all £ € E, we revert
to K in the IFS. Moreover, if @, (£) = 1 — w,(£), then we revert to K in the FS. There are several
simple modifications for the IFSs [9,27], which we shall not discuss here. These modifications include
Pythagorean FSs [20, 23], Fermatean FSs [21], Spherical FSs [6, 16], g-rung orthopair FSs [4, 24],
g-rung orthopair PFSs [17], (s, %)-fuzzy local functions, continuous multifunctions, and double fuzzy
ideal topological spaces [2,3]. All these definitions, starting from FSs, have applications in image
processing, decision theory, uncertainty modeling, and beyond, as in [10, 14,26].

In this paper, we merge the classical definitions of multifunctions in general topology and the
standard modal logic [13, 19] with the notion of PFSs, thus further expanding into the realm of picture
fuzzy modal topological structures (PFMTSs). This exploration includes the creation of PEMTSs
facilitated by the standard picture fuzzy operations of "union" (U) and "intersection" (N). Continuous
functions between picture fuzzy topological spaces were discussed in [1].

The motivations of this paper are as follow: Section 2 presents fuzzy modal topological structures
related to the picture fuzzy sets, and studying some important results including several modal operators;
(2) picture fuzzy topological multifunctions and their common results. These results are given in
Section 3; (3) some types of continuity of picture fuzzy multifunctions, and study the possible
implications; and finally, the conclusions are given in Section 5.

The research on PFMTSs has several important applications in domains: decision making, pattern
recognition, artificial intelligence, information retrieval and data mining. PFMTSs address critical
gaps in handling uncertainty, imprecision, and neutrality, which are inherent in real-life problems
across diverse domains. To bridge these gaps, PFSs were introduced, adding a neutrality component
to the membership and non-membership values, thereby enabling a more nuanced representation of
uncertainty. PFMTSs expand upon these concepts by the integration in modal logic and general
topology using the PFSs. This integration introduces global operators, such as closure, interior, and
modal operators (O and <), which modify classical topological and modal relationships. These global
operators facilitate a robust analysis of FSs under modal and topological constraints, providing a
suitable tools for theoretical exploration and practical applications. The study of PFMTSs not only
extends the theory of FSs but also establishes a wide platform to address modern computational
challenges. Its ability to integrate neutrality, positivity, and negativity within a unified framework
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lays the foundation for the further exploration and application of PFMTSs in dynamic systems, hybrid
models, and emerging technologies, thus positioning it as a cornerstone of modern mathematical and
computational innovation.

PFMTSs have special important applications in the Artificial Intelligent work.

Fuzzy Logic Systems: PFMTSs can enhance fuzzy logic systems, which are used to handle
uncertain or imprecise information, thus improving decision making and reasoning processes.
Additionally, it can improve the expert systems by incorporating various degrees of truth, belief, or
doubt, thus enabling more braced and human liker decision making [5, 15,22].

Natural Language Process: PFMTSs can be used in the natural language process for semantic
analyses, thus allowing systems to understand and process Language with varying degrees of ambiguity
or multiple interpretations [11, 18].

Machine Learning: The research can benefit machine learning models by enhancing clustering and
classification algorithms, particularly when dealing with ambiguous data. PEMTSs can be applied to
decision-making and control systems, helping robots to navigate and interact in uncertain or dynamic
systems [25].

2. Picture fuzzy modal topological structures

Continuing from previous discussions and the notions given by Atanassov in [8,9], let’s define a PFS
K on the universal set £. The set K consists of elements & € E, each described by degrees of positivism
(w, (€)), negativism (w, (£)), and neutralism (o, (£)) that lie within the interval [0, 1]. Specifically, K
is represented as {(£, w, (&), @, (&), 0. (£)) € € E}, where each component satisfies the condition 0 <
w, () +@ (&) +0,. (&) < 1forevery element x. The term 7, (€) = 1 — (w,(§) + @, (€) + 0, (£)) indicates
the degree of the refusal membership value for each £ in K, quantifying the extent to which & does not
belong to K. This framework is pivotal to assess and handle the nuances of membership within PFSs,
enabling a more comprehensive analysis of elements based on their multiple affinities.

Definition 2.1. [4] Let & be a nonempty set, K = {{&, w, (&), @ (&),0,. ()| € E} and Y =
€ wy(§), @ (&), 0 4(£)) & € E}. Then,
(WK C Yiffforallé € E w,(¢) < w (&), w, (&) = @ (&) and 7, (§) < 0 (&) or o,(§) = 0 (&),
Q)K= YHiffforallé € E w, (&) = w, (&), w, (&) =w,(€) and o (§) = 0 (&),

T E @OV w @) @@ AT @)\,
G KL= {< (.6 Ao () > &< B

] E @O A @) @OV T @\,
hEnT= {< (. (E) Ao (@) > &< B

EN @O AT @) - @O AT\
G K wH= {< (@) A @ (), () A 0 (£) >'§ < E)

) £.(@,(0) A w o, (©),
©KaH= {< 1= (@,) A 4 (©) — (0, () A T (@), (&) A T ()
(7) 9K = (£, @, (). 0, (). 7, ) | € B,

Now, the definitions of standard two modal operators over (PFS) are presented:

>|§ €&}

0K = {{&, 0. (&), 1 = w (§) — 0. (), 0 () ¢ € B},

AIMS Mathematics Volume 10, Issue 3, 7430-7448.



7433

We can see that OK € K € ©K in general, and OK # K # OK for any proper set K in (PFS), that
is, w, (&) + @, (&) + 0,.(€) < 1 with o, (€) # O for every element £&. Otherwise, K is an IFS and still
oK ¢ K € ¢K as usual in (IFS). Moreover, if K is a non proper PFS and @, (¢) = 1 — w,(§), then K is
aFSin (FS) and OK = K = OK. Thus, (FS) C (IFS) C (PFS).

Letb = {(¢,0,1,0)l¢ € E}, §={(£,0,0,1)I§ €}, §={( 1,0,0)l¢ € E},

where b € K C #f for all K € (PFS). Normally, P(b) = {b} and P#) = {KIK C #} where K =
(&, w (&), T (&),0,.(6))|€ € EY; therefore, (PFS) coincides with P(#). (IFS) coincides with the set
{KIK € E}in which K = {{£, w, (&), @, (£),0) |¢ € E}). Moreover, (FS) coincides with the set {K|K C =}
in which K = {(£, w,(6), 1 — w,(£),0) € € E} or K = {(&, 1 — @ (&), w,(£),0)|£ € E}.

Based on the notions in [8], we will call a c[-PFMT by the object (P#),cl, A, V,0) where E is a
fixed universe, ¢l : P(#) — P(#) is an operator over =, A,V : P(#) X P(#) — P(#) are operations over
= such that for every two K, 1 € P(#), we have Kv 1 = 4(dKad Y).

o : P(#) — P(#) is a modal operator over X, and for every two K, I € P(}).

Cl1 cl(Ka 9) = clK)a cl( 1),

C2 K C cl(K),

C3 cl(b) = b,

C4 cl(cl(K)) = cl(K),

C5 o(Kv Y) = o(K)v o (),

C6 o(K) Cc K,

C7 o) =4,

C8  o(o(K)) = o(K),

c9 o(cl(K)) = cl(o(K)).

Note: Not all conditions are applicable to every element within PEMTSs. In certain instances, some
conditions are absent, and in others, the relationships defined by these conditions are characterized
by weak (feeble) connections. For such structures, the term "feeble" is employed, and these are
referred to as picture fuzzy feeble modal topological structures (PFFMTSs). For these PFFMTSs,
we introduce analogs to the topological operators "closure" and "interior" for PFSs as follows:
cln(K) = {(&,6.,8, .k )E€ E), intn(K) = {{&, 6., 0,2, )€ € B}, cly(K) = {{&,1 =N, — k., N,k )|£ € E}
and inty(K) = {{&, 6., 1 — &, — k., k. ) |€ € B}, where

& = Vo® 8=N\w© «=/\o©
geB 1= £eB

g, = Nw©®, 0.=\/w.6. »=\/0.®
geE £eE £eB

Therefore,

(1) dely(dK) = intq(K),

(2) dint(dK) = cly(K),

(3) inta(K) C intr(K) C cl(K) C cly(K).
These definitions expand the conceptual framework of topological operations within the context
of PFSs, thus accommodating the variability and flexibility required by the feeble relationships in
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PFFMTSs. Always, for any K, Y € P(#), the De Morgan’s laws are satisfied, that is,
KU Y=4dKNnd4dY9)and KN Y =4(dKUdY).

Theorem 2.2. (P(#),cl,, U,N,0) is a cl- PFFEMT for which the equality relation *“ = ” is changed to
the inclusion relation *“ C ” in conditions (C5) and (C9).

Proof. Let K, Y € P(#). Then, we will check the validity of all the nine conditions C1-C9.
(e}
B U ) =cln({(€, 0, (), T, €), T (E)) E € T UL 0,4(8), @ (€), 0 ,(D)) £ € )
=clo(l{E, (@, (&) V @ ((©), (@, () AT (), (7€) A o, (€)) £ € E))
={<§, V@@V w0.,@) \@& AT, o n Gq(§))> £ e =)

Te£ Tes Teg
={(&, (ex Ve, KR, AN, (k. Ak )€ € B}
=cl(K) U cl (),
(C2)
K=& w0 (8), @ (6), 0. ())& € B} S {{€, &, R, k) |€ € B} = cl(K),
(C3)

cln(0) = eln(1(£,0,1,0) | € ) = {<§, Vo AL A0> £ € E) = (£.0,1,0)[¢ € 5} =,

£EE feE feE
(C4)
cln(cln(K)) = cln({{¢, &, N, k) 1€ € BY) = (€, &, N, k) I€ € B} = cln(K),
(C5)
oK N Y)
=0({(&, (@, (&) A w (&), (@ (&) VT (£), (0. (E) Ao, (©))) € €ED
={{&, (W (&) A w4(©), 1 = (W () AN w (&) = (0 () AT (), (0. (&) Ay (E))IE € E}
CHE (0 () A w4(6), (1 = w () =0 (E) V(1 = wy(§) — T 1)), (0, (E) Ao (£)) ¢ € E)
={({€, 0 (), 1 — w (§) = 0, (&), T () € B} N &, w (), 1 —w (&) — (), 0, (H) I € E}
=0(K)na( '),

(C6)

0(K) = (& w, (), 1 - w, () - 5.(£), 0. () € € B} C {{§, 0, (§), w (B), 0, () [§ € E} =K,

(C7)
D(ﬁ) = D(Kf’ 1,0, 0> |§ € E}) = {<‘f’ 1,0, O> |§ € E} = ﬁa
(C8)

0(a(K) =0({(&, w (&), 1 - w (&) = 7, (), 0. () |§ € ED
={(§, 0 (), 1 —w (&) — 7, (&), 7. () € € E} = O(K),
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(€9)
O(cln(K)) =0({(&, &, Ny k) 1E € BN = ({6, €. 1 — € — K k) [E € E)
:{<‘f’ € /\(1 - wK(é:)) — Ky, KK> |§ € E}

=

Example 2.3. Let E = {£,&,}. Then,
() ForK, 9 e PH), K =1{£,0.3,0.5,0.1)|£ € E} and 1 = {(£,0.2,0.6,0.2) |€ € =},
0K = {(£,0.3,0.6,0.1)|¢ € E}, 0 Y = {(£,0.2,0.6,0.2) |€ € &},
o) Nno(Y) ={,0.2,0.6,0.1) £ € E}, KN Y ={(,0.2,0.6,0.1)|£ € E},
oK n Y) ={£,0.2,0.7,0.1) | € E} # oK) na( Y).

(2) For K € P(), K = {(£,,0.2,0.1,0.1), (£,0.6,0.2,0.2) ¢, & € E),
cln(B) = {(£,0.6,0.1,0.1) ¢ € E}, O(cl(K)) = {(£,0.6,0.3,0.1) |¢ € B},
0(K) = {(£,,0.2,0.7,0.1), (£,0.6,0.2,0.2) |¢,& € E},

cln(@(K)) = {(£,0.6,0.2,0.1) ¢ € E} # O(cl(K)).

Note: If we take o, (£) = 0 (&) = 0, then the relations in C5 and C9 are “ = ” (see Atanassov [8]).
Now, we can prove for each K € P(#)) that: int,(K) = dcl~(dK) and ¢(K) = 40(dK). Since

4 cln(dK) = deln ({8, @, (&), w, (£), 7, () § € E))
A P &5 k) I € ED)

(& &0, B0 k) 1€ € B = intn(K).

0(EK) = 0({(E, @, (), w.(£), 7 () I§ € ED

A€, @), 1 = (&) — 0. (), 0 () ¢ € ED)

= {(é1-w,) -0, 7.8 0.)E €E} = OK.

|l

In comparison to the above, we will call an int-PFMT by the object { P(}), int, v, A, = ) where E is
a fixed universe, int : P(§) — P(#) is an operator over E, v, A : P(#) X P(§) — P(#) are operations over
= satisfying De Morgan’s laws.

x 1 P(#) — P(#) is a modal operator over &; for every K, Y € P(#).

D1 int(Kv 4) = int(K)vint( Y),

D2 int(K) C K,

D3 int(4) = 4,

D4 int(int(K)) = int(K),

D5 *(KA Y1) = «(mathbbK)A = (Y1),

D6 K C x(K),

D7 x(b)=b,

D8 #(x(K)) = =(K),

D9 #*(int(K)) = int(x(K)).

Theorem 2.4. { P(§),int~, N, U, O ) is an int-PEFMT for which the equality relation “ = 7 is changed
to the inclusion relation *“ 2 7 in conditions (D5) and (D9).
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Proof. The proof is similar to the proof of Theorem 2.2. O

Example 2.5. Let E = {£1,&). Then,
(1) ForK, Y e P#), K = {(£,0.5,0.3,0.1)|¢ € E} and Y = {{£,0.6,0.2,0.2) |¢ € E},
O(K) = {(£,0.6,0.3,0.1) |6 € B}, <O(Y) ={(£,0.6,0.2,0.2) |¢ € B},
OK)UO(Y) ={(£,0.6,0.2,0.1) |6 € E), KU YT ={¢0.6,0.2,0.1)|¢ € E},
O(KU Y) ={(£,0.7,0.2,0.1) |¢ € B} # O(K) U O(Y).

(2) ForK € P(#), K = {(¢1,0.1,0.2,0.1) (£,0.2,0.6,0.2) |, & € E),
int,(K) = {(£,0.1,0.6,0.1) € € B},  o(inta(K)) = {(£,0.3,0.6,0.1)|¢ € E},
O(K) = {(£1,0.7,0.2,0.1) (£,0.2,0.6,0.2)|&,,& € E),

int,(O(K)) = {(£,0.2,0.6,0.1) |¢ € E} # O(int(K)).

Note: If we take o, (£) =0, (£€) =0, then the relations in D5 and D9 will be “ = ” (see Atanassov [8]).

Theorem 2.6. For every K, Y € P(}), we have
(1) int~r(K) c K c cl5(K),
(2) cln(intn (K)) = int(K),
(3) intn(cln(K)) = cln(K),
@) cln(KN Y) C cln(K) Ncly(Y),
(%) inty(K U Y) 2 intn(K) U int,( Y),
(6) cln(®) = 4,
(M) cla() = 4,
(8) int~(b) = b,
(9) intn(h) = 4,
(10) O(cln(K)) < cln(a(K)),
(11) o(int,(K)) C int,(O(K)),
(12) O (cln(K)) 2 cln(O(K)),
(13) &(int,(K)) 2 intH(O(K)).

Proof. We check (4) and (11).

)
cn(® 0 1) =cln (€, (@& A @ (©), (@) V T 4(©), (&) V o () I € E)
={<§, V@&V, \@&va,@), \o@&v aq<§>>> £eE)
geE £e2 £eE
U (e Ve, Ry VR, VK))IEEE)
=l € Nk N E € BN (e, Rk ) I € ) = cln() N eln( D).
(11)

O(intn(K)) =0((E, 6., €.,k V€ € B)) = ((£,6,, 1 — &, — k ok, ) | € E)
(&, e, 0, k) I€ € B) = intn(O(K)).

O
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Example 2.7. Let = = {§1 &), Then,
(1) For K e P(#), K = {{(£1,0.1,0.2,0.3) (£,0,0.3,0.5)| £1,4 € B},
intn(K) = {(£,0,0.3,0.3) |6 € E}, O(intn(K)) = {(£,0,0.7,0.3) |¢£ € E},
0(K) = {(£1,0.1,0.6,0.3) (£,0,0.5,0.5)| &,& € B,
int~(O(K)) = {(£,0,0.6,0.3) |€ € E} # O(int(K)).
(2) For K € P(), K = {{(£1,0.2,0.3,0.5) (£,0.1,0.6,0.3) | £1,&, € B},
cln(K) = {(£,0.2,0.3,0.3) 16 € Z},  O(cln(K)) = {{£,0.4,0.3,0.3)|¢ € B},
O(K) = {(£1,0.2,0.3,0.5) (£,0.1,0.6,0.3)| &1, &, € B},
cln(O(K)) = {(£,0.2,0.3,0.3) |¢ € E} # O(clq(B)).

Note: If we take o, (£) =0 for all £ € E, then we obtain the equality in the given axioms (10, 11, 12, 13)
as in Atanassov [8].

Corollary 2.8. For every K € P(#}), we have the following:
(1) O(cln(O(K))) = 30(intn(O(IK))) = {(€, &, 1 — €x — K.k, ) € € B

(2) O(cln(a(K))) = Ha(int,(O(HK))) 2 {4, €., 1 — Ky Ky )6 € B

(3) B(eln(©(K)) = 40(intn(A(IK)) 2 {(&6, 1 - R, =2, 8, +2x, — &, k. ) |§ € B}
(4) O(cln(¢(K))) = Ha(int,(@(EK))) = (€, 1 - NK — Ko NK’K@ & € =)

(5) B(intn(a(K))) = 40l (O(FK)) = {(§, &, 1 — &, — ke k) € € B

(6) o(intn(0(K))) = 40(cln(O(EHK))) € (€, &, + %, — koo 1 =& =2, &) |6 € B);
(7) O(inta (O(K))) = 40(cln(@EK)) € {(&, 1 - I, — k., 0y k) 1€ € E)

(8) O(intn (O(K))) = d0(cln(@EK)) = {(&, 1 = F, — k., 0, k) 1 € E}

(9) O(cla(a(EK))) = 40(intn (O(K))) = (&, P, 1 - ﬁKKKaKK> € € E}

(10) O(cln(a(HK))) = H0(inta (O(K))) 2 (€, T, 1 = 8, — k. &) |6 € E)

(11) O(cla(O(HK))) = 40>ntn(O(K))) 2 (6, 1 — &, — %, &, + %, — Kk k) |6 € B
(12) O(cln(O(dK))) = 0(int,(AK))) = (K&, 1 — &, — &, &,k ) € € B

(13) O(intn(B(EK))) = 0l (O(K))) = ({6, N, 1 =N, — k., k) |6 € B}

(14) o(intn(O(dK))) = 40(cln(O(K))) € &R, + 2, — k., 1 =N, — 2, KK>|§ €&k
(15) O(intn(O(dK))) = 40(cla(@K)) C (6, 1 — € — K. €,k )IE € E

(16) O(intn((dK))) = 40(cln(@K)) = (6,1 — € — K., €,k )6 € B

Example 2.9. Let = = {51 &), Then,
(1) For K e P#), K = {(£,0.2,0.2,0.1), (£,0.4,0.3,0.1)|&1,& € E),
O(K) = {(£1,0.2,0.7,0.1) ¢£,0.4,0.5,0.1)[ £1, & € B},
int,(O(K)) = {(£,0.2,0.7,0.1) |¢ € E},
O(int(O(K))) = {(£,0.2,0.7,0.1) | € E}, while
{(& e, 1 —€, — k., k) |€ € B} = {(£,0.4,0.5,0.1) |¢ € B}, and then
O(inty(O(K))) # {{&, €., 1 — €, — k., k) |€ € B}
(2)F0rK€$D(ﬁ) =1{(£1,0.3,0.4,0.2), (52010106)|§1 & e B
=1{(£1,04,0.4,0.2) (£,0.3,0.1,0.6)| &1, &, € E},
Clm(O(K)) ={(£,04,0.1,0.2)|¢ € B}, O(cl(©(K))) = {(£,0.4,0.4,0.2) |E € E
intm(O(K)) {(f 0.3,0.4,0.2) |€ € E}, O@nt,(O(K))) = {(£,0.3,0.5,0.2) | € 5},
(€ 1=K, N k) 1E € B} ={(£,0.7,0.1,0.2) |¢ € =},
€ 1-3, -« 19 K>|f€ E} = {(5040402>|§€ =},
D(Clm(O(K))) # {<§ 1=8, &, N k) IEEE

K
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OGinta(OK))) # ({6, 1 -9, —k,, 0, k, )€ € B},

Note: If we take o (&) = 0, for all ¢ € E, then we obtain the equality in the given axioms in (2, 3, 6, 7,
10, 11, 14, 15) as in Atanassov [8].

Theorem 2.10. (1) (P(#), cly, Y, O) is a cl-PFMT.
(2) (P#), int,, M, O) is an int- PFMT.

3. Picture fuzzy topological multifunctions

The map F : E +» Y is called a PFTM for any (£,{) € E x T iff F(¢) € PFS(T) for each ¢ € E.
The degree of membership of ¢ in F(£) is denoted by F(£)({) = Yr(£, ). The domain of F, denoted
by D (F), and the range of F, denoted by R (F), are defined by the following: for any é¢ € Eand { € T,
D ((F) (&) = UYr(,¢) and R (F) () = UWr(, ). Fis called crisp iff Yr(£,¢) = (1,0,0) V¢ € E and

LeT £eE

e . Fis called Normalized iff Yé e =, there exists {o € T such that Wg(&, ) = (1,0,0). Fis called
surjective iff R (F) () = (1,0,0) VY € Y. The inverse of F, denoted by F~ : T — =, is a PFM defined
by F(0)(€) = F(€)(() = Wr(é, ). One can easily verify that D (F~) = R(F) and D (F) = R(F~). The
image F(K) of K € PFS (), the lower inverse F'( 1) of Y € PFS(T), and the upper inverse F*( 4) of
Y e PFS(T) are defined, respectively, as follows:

FE)Q) = | [¥P=(6, 0 n K@),

feB

F(D© = 1.0 n 901,
LeY

BN = [ |[3¥=(€.0 U Q).
LeY

Definition 3.1. A picture fuzzy topology on E is a map v : PFS(E) — P defined by t(K) =
(w(K), @ (K), 0(K)) on Z, which satisfies the following properties:
(1) 7(b) = 7(#) = (1,0,0),
2) 1K NKy) > 7(Ky) A 1(Ky), for each K, K, € PFS(X),
B) (UK > A 1K), foreachK; € PFS(E), i €T
iel’ iel

The pair (2, 7) is called a picture fuzzy topological space in Sostak’s sense. For any K € PFS(2),
the number w.(K) is called the openness degree, w.(K) is called the non openness degree, while o .(K)
is called the neutral degree. For K € PFS(E), cl(K,(¢,%,%) = (Y e PFSE): Kc Y,7dY) >
(¢, %, M}, int(K, (s, %,9)) =J{He PFSE): K2 Y,7(Y) > (s, x,9)}.

Definition 3.2. LetF : (E,7) + (Y, 1) be PFTM, ¢ € Iy,x € I, and 9 € I,. Then, F is called:

(1) PF"S -continuous at a point &y, € D (F) iff Egpnyy € F(H) for each 1 € PFS(Y), 7°(4) >
(s, %,0) there exists K € PFS(2), 7(K) > (¢, %,1), and &y npy € K such that KN D (F) C F“( Y);

(2) PF'S -continuous at a point &y € D (F) iff Emnsy € FI() for each 1 € PFS(Y), v*( 1)>
(¢,%,0) there exists K € PFS(2), 7(K) > (¢, %, 1), and &y nypy € K such that K C F'( 4);

(3) PF"A-continuous at a point &gy € D (F) iff Egunyy € F( Q) for each 1 € PFS(Y), 7°(4) >
(¢,%,0) there exists K € PFS(E),7K) > {(¢,%,9), and &y € K such that K N D(F) C
F(int(cl( 1, (¢, %, 9)), (s, %, 1)));
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(4) PF'A-continuous at a point Emny € D@ iff Emnny € Fi(Y) for each 1 € PFS(Y),
(YY) = (¢, %,9) there exists K € PFS(E),7K) > (¢,»,9), and &ppy € K such that K C
F(int(cl( 9,45, %,9)), (s, %, 9)));

(5) PF"S (PF'S )-continuous iff it is PF“S (PF'S )-continuous at every point Emnyy € D (F);

(6) PF“A (PF'A)-continuous iff it is PF"A (PF'A)-continuous at every point Emnyy € D (F).

Remark 3.3. (1) If F is normalized, then F is PF"S -continuous at a point &gy € D (F) iff Egnnsy €
F“(Y) for each 9 € PFS(Y), 7°( Y)= (¢,x,9) there exists K € PFS(E),7(K) > (¢,%,9), and
Eimnyy € Ksuch that K C F“( Y). Equivalently, T(F*( 1)) > v*( Y).

(2) If F is normalized, then F is PF"S -continuous at a point &gy ppy € D (F) iff Egnpsy € F(Y) for
each 4 € PFS(T), T°(Y9) > (¢, »,19), there exists K € PFS(E), 7(K) > (¢,%,9), and & 1y € K such
that K C F*(int(cl( Y, (s, %, D)), (s, %, 3))).

(3) PF“S (resp. PF'S )-continuity=—> PF"A (resp. PF'A)-continuity.

Theorem 3.4. Let F : (E,7) & (T,7*) be a PFTM. Then, for 1 € PFS(Y), s € Iy,x € I, and ¥ € I},
the following are equivalent:

(1) Fis PF'A-continuous;

(2) F'(Y9) C int(Fl(int(cl( Y, (g, %, ), {5, 2%, 9))), {5, 2%, 9)), if T*( D) > (g, %, ) ;
3) T(F( D)) > (¢, %,9), if U =int(cl(Y,{s,x% D)), (s, %,3));

4 T(F (int(cl( 1, (s, %, 9)), (s, %,9)))) = T°( D).

Proof. (1) = (2)Let&yynpy € D(F), H e PFS(T), 7 () > (¢, %,9), and &y € F!( Y). Then, there
exists K € PFS(Z), 7(K) > (s,%,9), and &,y € K such that K C F(int(cl( 9, {s, %, D)), (s, %, }))).
Thus,

Emnyy € K CF(int(cl( 4, (s, %,9), (5, %,9))),

and hence
F'( 1) F(int(cl( 1, (s, %, 9), (s, %, 9)))

int(F'(int(cl( Y, (g, %,9)), (5, %, ), (s, %, D).

(2) = (3) Let Y =int(cl( Y,(s,x%,)),{s,%,9)) € PFS(T). Then by (2),

F'(9) C int(F (int(cl( 9, (s, %,9)), (s, %, IN), (s, %,9)) = int(F'( D), (s, %, ).

Thus, 7(F'( 1)) > (g, %, ).

(3) = (4) Suppose that there exist 4 € PFS(Y), s € ly,x € I, and 9 € I; such that

T(F(int(cl( Y, (s, %, 9)), (s, %, ) < (s, %, %) < T°( ).

Since 7 (Y) > (¢,%,9) and int(cl(Y,{s,%,9),{s,%,9) = int(cl(int(cl(H,{s,%,D)), {(¢,%,9),{(¢,%,9),{¢,%,T).
Then, by (3), we have 7(F/(int(cl( Y, {5, %, D)), {5, %,9)))) > (g, %,9) . It is a contradiction.

Thus, 7(F'(int(cl( Y, {5, #, D)), (5, 2, 3)))) > 7°( Y).

(4) = (1) Let &0y € D(F), 9 € PFS(Y), 7°(Y9) > (s, %,9), and &pnppy € F/( D).

Then, by (4), we have F(int(cl( 1, (s, %,9)), {5, %,9))) = K with 7(K) > (g, %, ).

Since Y Cint(cl( Y,{s,x,)),{s,x,1)), then

Emmmp € F(Y) C Fl(int(cl( Y, (s, %, 9)), (s, 2,9))) = K and (1) follows.

N 1N

O
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Theorem 3.5. Let F : (E,7) v (V,7°) be a PFTM. Then, for 4 € PFS(T), ¢ € Iy,x € I, and 9 € I,
the following are equivalent:

(1) Fis PF'A-continuous;
Q) F(Y9) 2 cl(F“(cl(int( Y, {s, %, M), {5, %, ), {s, 2, M), if T*(dYU) > (¢, %,T);
3) T(A(F“( 1)) = (g, x,9), if Y = cl(int( Y,{s, %, ), (s, %,)).

Proof. (1) = (2) Let F be PF'A-continuous and Y € PFS(Y) with (4 9) > (g, %,9). Then, by
Theorem 3.4(2),

(4 9) int(F'(int(cl(3 Y, (g, %, ), (g, %, ), {5, %, T))
int(F' (int(3(int( T, (s, %,9))), (5, %, D)), (5, %, D))

int(F' (A(cl(int( 1, 5, %, 9))) (s, %, D)), (s, %, ).

N

Since

JF (1) = FEY)
C int(F (Hcl(ini( T, (s, 2, 9))), (5, %, ), (5, %, 9))
= int(dF"(cl(int( Y, (s, %, 3)), (s, %, 3))), {5, %, 1))
= J(cl(F(cl(int( I,{s, %, D)), (s, %2, ))), {5, %, T))).

Thus, we obtain F“( ) 2 cl(F“(cl(int( Y, {s, %, D)), (s, %,9))), (s, %, 3)).
(2) = (3) Let Y = cl(int( 4,{s,%,9)),(s,%,9)) € PFS(T). Then, by (2),

F'CD) 2 e (cllini( 1, (s, %, ), (s, 2%, 9N), (S, %, 1))
cl(F'( Y, (s, %, ).

Thus, T(AF“( 9))) > (s, %, 0).

(3) = (1) Let Y =int(cl( Y,(s,%,3),{s,%x,9) € PFS(Y). Then, 44 = cl(int(4Y,{s,%,9),{(s,x%,3)),
and hence, by (3), T(dF*“(d 1)) > (g, %, ), that is, T7(F'( 1)) > (g, %, ?).

Then, by Theorem 3.4(3), F is PF'A-continuous. O

Theorem 3.6. Let F: (E,7) & (1, 7*) be a PFTM. Then, for 4 € PFS(Y), ¢ € Iy,x € I}, and ¥ € I},
the following are equivalent:

(1) F is PF"A-continuous;

) F(Y) C int(F“(int(cl( Y, (s, %,9)),{s, %, ))),{s, %, D), if T°(T) > (¢, %,7);

3) T(F( ) = (s, x,9), if YU =int(cl( Y,{s,x,3)),{s,%,3));

(@) T(Fint(cl( 1, (¢, %,3)),{s,%,1)))) = T°( );

(5) F'(Y) 2 cl(F(cl(int( Y, (g, %, D)), (s, %, ), (s, 2, D), if " 1) > (g, %,3);

(6) TAF (D)) > (s, 2,9), if U = cl(int( Y,{g, %, D)), (s, %,3)).

The following example shows that generally a PF'A-continuous and PF"A-continuous
multifunction need not be either PF'S continuous or PF"“S -continuous.
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Example 3.7. Let Z = {£1, &), Y ={{1, 0, ), anda PFTMF @ E « Y be defind by Wr(£1,41)=(1,0,0),
Yr(é1,4) = (0.1,0.7,0.1), Ye(£,4) = (0.25,0.25,0.5), Wr(é,, £) = (0.33,0.33,0.25), Wr(é2, &) =
(0.1,0.1,0.1), and Yr(&,, &3) = (1,0,0) .

Define picture fuzzy topologies T,7° on 2 and ( respectively, for Ki={¢,,0.1,0.3,0.3),{£,,0.1,0.5,0.1),
Y, ={(£,0.05,0.33,0.5) | € Y}, and Y, ={{{,0.1,0.3,0.5) | € Y} as follows:

(1,0,0). K e (0.4,
() = { (05,025,025, K=K,
0,1,0), o.w,
(1.0.0), Te b,
: (0.33,05,0.1y, U= 1,
T =1 405,025,025), U= 4,
(0,1,0), o.w.

Then, F is PF“A (resp. PF'A)-continuous but it is not PF"S (resp. PF'S )-continuous because

F(Y,) < int(F(int(cl( Y4,0.33,0.5,0.1)),(0.33,0.5,0.1))),¢0.33,0.5,0.1)),
F( ) C int(F“(int(cl( 9,,(0.33,0.5,0.1)),¢0.33,0.5,0.1))),(0.33,0.5,0.1)),
F(Y)) < int(Fl(int(cl( 9;,¢0.33,0.5,0.1)), (0.33,0.5,0.1))),(0.33,0.5,0.1)),
F(Y) <€ int(F'(int(cl( 9,,¢0.33,0.5,0.1)), (0.33,0.5,0.1))), (0.33,0.5,0.1)),
but
T(F(Y;)) = (0,1,0) # °(Y,) =(0.33,0.5,0.1),
r(F(4))) = (0,1,0) # 7°(Y,) = (0.33,0.5,0.1).

Theorem 38. Let F : (E,7) « (Y,v°) be a PFTM. Then, F is PF'A-continuous iff
cl(F(D), (5,2, ) < Fcl(,{s,%,9))) for any T < cl(int( 1,{s,%,9)),{(s,,3)) € PFS(Y),
cely,xel, and ¥ € I,.

Proof. Let F be PF'A-continuous. Then, for each Y C cl(int( Y, (s, %, %), (s, %,9)) € PFS(T),

cl(int( Y,{s,%#,9)),(s,%,)) = € (say), where € = cl(int(C, (g, %,1)), (s, %,7)). By Theorem 3.5(3),
T(4(F“(€))) > (g, %,1), and thus

cl(E (), {5, %, D)) € cl(F*(C), (s, %, D)) = F'(cllyo( T, {5, %,9)), (s, %,9))) € F'(cl( L, (g, 2%,D))).

Conversely, if Y = cl(int( Y, (s, x%,9)),({s,%,1)), then U C cl(int( Y, (s, %,1)),{s,x,7)), and we
have cl(F*( Y),{s,»,9))) € F(cl(Y,{(s,x,%))) = F*( 1). Thus, 7(4F" 1))) > (s,x,?). Hence, by
Theorem 3.5(3), F is PF'A-continuous. O
Theorem 3.9. Let F : (E,7) + (V,7") be a normalized PFTM. Then, F is PF"A-continuous iff
cl(F'(D), (s, %, 9))) € F(cl( D), (s, %, D)) for any T C cl(int( 1,{s,%,9)),(s,%,9)) € PFS(Y), ¢ €
lo,n € 1, and V¥ € .
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4. Picture fuzzy weakly and almost weakly continuous multifunctions

In this section, the notion of PFTM is used, and some of its properties and implications are studied.
Various types of continuities of any PFTM between PEMTSs are introduced. Some implications are
presented for these multifunctions between various PEMTSs.

Definition 4.1. LetF : (E,7) v (Y, ") be a PFTM, ¢ € Iy,» € I, and ¥ € I,. Then, F is called:

(1) PF*W-continuous at a point &g,y € D (F) iff Egnnyy € F'(Y) for each 4 € PFS(T), T°( Y1) >
(¢,%,9), and there exists K € PFS(E), 7(K) > (¢,%,9), and &y pnpy € K such that K N D(F) C
F'(cl( Y, (s, %, 3)));

(2) PF'W-continuous at a point Emnyy € D(F) iff Egnnpy € Fi(Y) for each 1 € PFS(Y),t*(Y) >
(¢,%,9), and there exists K € PFS(E), 1K) > (¢, %), and &ppy € K such that K C
F'(cl(B, (s, %,9)));

(3) PF*W (PF'W) continuous iff it is PF*W (PF'W )-continuous at every point Emnyy € D(F).

Remark 4.2. (1) IfF is normalized, then F is PF"W-continuous at a point &gy € D (F) iff Egnnyy €
F“(Y) for each 1 € PFS(T),7(Y) > (g,x,9) there exists K € PFS(E),7(K) > {(¢,x%,9), and
Emnyy € K such that K C F(cl( Y, (g, %, 1))).

(2) PF"A (resp. PF'A)-continuity = PF"W (resp. PF'W)-continuity.

Theorem 4.3. Let F : (E,7) ~ (Y,7°) be a PFTM. Then, F is PF'W-continuous iff F/(4) C
int(Fl(cl( Y, (g, %, ), {5, %,9)) for any 9 € PFS(Y) with (Y1) > (¢,%,9), ¢ € Iop,x € I, and
9 e 1.

Proof. Let F be PF'W-continuous and 9 € PFS(T) with °(9) > (g, %,9). Then, if
Emnyy € F/( Y), then there exists K € PFS(Z),7(K) > (¢, %,9), and Emny € K such that
Emnn € K C Fl(cl( Y{s,%,9))), and hence, K C int(F'(cl( Y, (s, %,9))),{s,%,9)). Thus, F(4) C
int(Fl(cl( Y, (s, %,9))), (s, %, 9)). Conversely, let Emnny € D(EF), 9 € PFS(Y), 7°(Y9) > (¢, %,9), and
Emnyy € FI(Y). Then, &pppp € F( ) C int(F'(cl( 9, {5, %,9))), (s, %,9)) = K (say). Thus, &,.n € K
and 7(K) > (g, %, ) such that

K = int(F'(cl( Y, (s, %, 9)), (s, %, 9)) € F(cl( Y, (s, x,9))),
and then F is PF'W-continuous. O

Theorem 4.4. Let F : (E,7) v (Y, 7") be a normalized PFTM. Then, F is PF"*W-continuous iff
F“(Y) C int(F“(cl( Y, {5, %,%))), {5, %,3)) for any Y € PFS(Y) witht"(Y) > {s,x,1), ¢ € Ip,x € I,
and 9 € I,.

The following example shows that generally a PF“W-continuous and PF'W-continuous
multifunction need not be either PF"A-continuous or PF!A-continuous.

Example 4.5. Let E = {£1,&) and T = {{,0,5G). A PFM F @ & « Y is defind by Ye(é1,01) =
(03,0.1,0.5), We(&1,5) = (1,0,0), Wa(&1,43) = (0.1,04,0.2), We(ér, &) = (1,0,0), Wa(&,L2) =
0.2,0.4,0.3), and Yr(&,8) = (0.2,0.1,0.7). Define picture fuzzy topologies T, v on 2 and Y,
respectively, for K; = {(£,0.3,0.3,0.1),¢£ € E}, Y; = {(71,0.2,0.5,0.3),¢ € Y}, as follows:

(1,0,0), K e {b,#},
T(K) = (0.33,0.3,0.35), K=K,
0,1,0), ow,
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(1,0,0), Te b8},
(1 = {(033,033,033), U= 4,
(0,1,0), o.w.

Then, F is PF“W (resp. PF'W) continuous but it is not PF"A (resp. PF'A) continuous because

F“(Y;) =(0.2,0.5,0) C int(F“(cl( Y;,(0.33,0.33,0.33))),(0.33,0.33,0.33)) = (0.5,0.3,0),
F'(4,) =(0.2,0.5,0) C int(F'(cl( 14, (0.33,0.33,0.33))),(0.33,0.33,0.33)) = (0.3,0.3,0),
but

F“(Yy) =(0.2,0.5,0) € int(F“(int(cl( 1,,¢0.33,0.33,0.33)),(0.33,0.33,0.33))),(0.33,0.33,0.33))
=(0,1,0),

F'(4)) =(0.2,0.5,0) ¢ int(F'(int(cl( 1;,(0.33,0.33,0.33)), (0.33,0.33,0.33))), (0.33,0.33,0.33))
=(0,1,0).

Theorem 4.6. Let F : (E,7) + (Y,7) be a PF'W-continuous multifunction. Then, F'( 1) C
int(F'(cl( 1,{s, %, 9))), (s, %,9)) for any I = int(cl( 1,(s,%,9),(s,%,9)) € PFS(T), s € Iy, € I,
and 9 € 1.

Proof. Let F be PF'W-continuous and Y = int(cl( Y, (g, %, %)), (5, %,9)) € PFS(Y). Then, if Emnyy €
Fl(Y) C Fl(int(cl( 9, (s, %,9)), (s, %,3))), then there exists K € PFS (E), 7(K) > (¢, %,9) and Emnyy €
K such that

K C Fl(clint(cl( 1, (s, %, 9)), (s, 2,9)), {5, %, ) C F'(cl( Y4, (s, %, 9))).

Thus, K C int(F'(cl( Y, (g, %, 3))), (5, #,3)), and hence, F'( U) C int(F'(cl( Y, (g, %,9))), (s, %,9)). O

Theorem 4.7. Let F : (E,7) + (Y, 7") be a normalized PF"W-continuous multifunction. Then,
F(Y9) € int(F(cl( 1,4¢,%,9))). (s, %,9)) for any I = int(cl( 1, (s, %,3)),(c,%,8)) € PFS(Y),
cely,xel,and ¥ € 1.

Theorem 4.8. Let F : (E,7) v (Y, 7") be a PFTM, F be normalized PF"W-continuous, and for any
K e PFS(E),7(K) > (s, %, %), if F(K) C int(cl(F(K), (s, %,)),{s,%,1)), then F is PF"A-continuous.

Proof. Let égpnyy € D(F), H € PFS(T), v(Y) > (¢,%,9) , and &y € FY( H). Then, there exists
Ke PFS(E), 7(K) > (s, %,7), and &y € K such that K € F'(cl( Y9, (s, %, 7))); thus,

F(K) € FE(cl( L, {5, %, 9)))) C cl( L, {5, %, ).
If F(K) C int(cl(F(K), (s, x%,9)), (s, %,1)), then
F(K) C int(cl(F(K),{s,%,9)),({s,%,9)) C int(cl( 9,{s,%,9)),{s, %, 7)),
and hence, K € F/(F(K)) € F“(int(cl( Y, {s,%,9)), (s, %,))). Then, F is PF"A-continuous. O

Definition 4.9. LetF : (E,7) » (Y, 7) be a PFTM, ¢ € Iy,» € I, and ¥ € I,. Then, F is called:
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(1) PF"AW-continuous at a point &g,y € D(F) iff &pppy € FY(Y) for each 4 € PFS(Y),
T(Y) = (¢, %,9), there exists K € PFS(5), 7(K) > (¢, %,9), and &, € K such that KN D (F) C
cl(F(cl( 1, (s, %,1))), (s, %,1));

(2) PF'AW-continuous at a point &, € D (F) iff &,y € F(Y) for each U € PFS(Y),
(Y9 > {¢,%,9), there exists K € PFS(Z), 1K) > (¢,%,9), and &,y € K such that K C
cl(F(cl( Y9, (s, %,9))), (s, %, 9));

(3) PF“AW (PF'AW)-continuous iff it is PF*AW (PF'AW)-continuous at every point Emnny €D (F).

Remark 4.10. (1) IfF is normalized, then F is PF"AW-continuous at a point &,y € D (F) iff €gpnyy €
F“(Y) for each 1 € PFS(Y), v°(Y) > (s, x,1), there exists K € PFS(E), 7(K) > (¢, x,1), and
Emnyy € Ksuch that K C cl(F“(cl( Y, (s, x%,9))), (s, %,9)).

(2) PF*W (resp. PF'W)-continuity=> PF"AW (resp. PF'AW )-continuity.

Theorem 4.11. Let F : (E,7) - (V,7") be a PFTM. Then, for 4 € PFS(Y), ¢ € Iy,x € I}, and Y € I},
the following are equivalent:

(1) F is PF'AW-continuous;

(2) F/(Y) C int(cl(F(cl( 1,5, 2%, 9))), (S, %, 9)), (5, 2, 9)), if T*( 1) = (s, %, D) ;

(3) cl(int(F*(int( U <{s, %, D)), (s, %, 3)),{s, %, 3)) CF( ), if *(d ) > (5, %, ).

Proof. (1) = (2)Letéyuup € D(F), Y€ PFS(Y), (Y1) > (s, %,9), and &) € F!( Y). Then, there
exists K € PFS(E), 7(K) > (¢,x,9), and &,y € K such that K C cl(F(cl( Y, (s, %, 9)), {5, %, 3)).
Thus,

Emnyy € K Cint(cl(F'(cl( L, (s, %, 9))), (s, %,9)), (s, %, I),

and hence,
F(Y9) C int(cl(F(cl( Y, (s, %, ), (s, %, ), (g, %,9)).

(2) = (3) Let Y € PFS(T) with 7°(4 Y1) > (g, %, ). Then, by (2),

JF(D] = FEY) Cint(cl(F (cl(d 9, (s, %), (s, %)), (s, %,3))
Acl(ine(F (int( 1 <s, %, 3))), (S, %, D)), (S, %, ))].

Thus,
F“(Y) 2 cl(int(F“(int( Y <{g, %, 9))), {5, %, ), {5, %,)).

(3) = (1) Let &unyy € D(F), U € PFS(T), (1) = (s, %,8), and &g,y € F'( U). Then, by (3), we
have
4| int(cl(F(cl(d L. (5, 2. 9))). (5. 2, 9)). (5. %, BY)
= cl(int(F"(int(3 1, (5., 9)). (5.2, D). (6,2, 9)) CF(d D) = 4[F(D)]

and hence,
F(Y) C int(cl(F'(cl( 9, (s, %,9))),{s, %, D)), {5, %,3)) C cl(F(cl( 9,{s,%,9))),{s,%,9)). Thus, F
is PF'AW-continuous. O

Theorem 4.12. Let F: (E,7) & (1, ") be a normalized PFTM. Then, for 1 € PFS(Y), ¢ € Iy,x € I,
and 9 € Iy, the following are equivalent:
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(1) Fis PF*AW-continuous;

() FY(D) < int(cl(F(cl( T, (s, %, 90), (¢, %, ), (¢, 2, ), if T°( ) = (¢, %, ) ;

(3) cl(int(F(int( Y, (g, %, ), {5, %, ), (s, %,9)) CF (D), if r*(d 1) > (s, %,9).

The following example shows that generally a PF“AW-continuous and PF'AW-continuous
multifunction need not be either PF"W-continuous or PF'W-continuous.

Example 4.13. From Example 4.5, for K; = {(£,0.3,0.1,0.1),¢ € B}, Y; ={(£,0.2,0.5,0.3)| { € T},
define T as follows:

(1,0,0), K € {b,#},
7(K) =< (0.33,0.3,0.35), K=K,
(0,1,0), ow.

Then, F is PF*AW (resp. PF'AW )-continuous but it is not PF*W (resp. PF'W )-continuous because
F“(41,) = (0.2,0.5,0) C int(cl(F“(cl( 1;,(0.33,0.33,0.33))),(0.33,0.33,0.33)), (0.33,0.33,0.33)) = 4,
F'((Y,) = (0.2,0.5,0) C int(cl(F'(cl( Y;,(0.33,0.33,0.33))), (0.33,0.33,0.33)), (0.33,0.33,0.33)) = 4,
but

FCh)
F(4))

(0.2,0.5,0) € int(F“(cl( 1,,¢0.33,0.33,0.33))),(0.33,0.33,0.33)) = (0.3,0.3,0.1) = b,
(0.2,0.5,0) ¢ int(F'(cl( 1,,¢0.33,0.33,0.33))),¢0.33,0.33,0.33)) = (0.3,0.3,0.1) = b.

Theorem 4.14. LetF : (Z2,7) > (T, 1) be a normalized PFTM. IfF is PF*AW-continuous and PF'A-
continuous, then, F is PF*W-continuous.

Proof. Let Y € PFS(T) with 7°(Y) > (¢, x,%), ¢ € ly,x € I}, ¥ € I}, and F be PF*AW-continuous.
Then, by Theorem 4.12(2),

F'(Y) C int(cl(F'(cl( Y, (s, 2%,9))), (s, %, 3)), {5, %,9)).

Since
cl( 9,4, %,9)) = cl(int(cl( 1,{s,%,1)),(s,%,9)),{s, %, 1)),

it follows from Theorem 3.5(3) that
T(d[F“(cl( Y, (g, %, )] > {5, x%,9), then F*( 1) C int(F“(cl( Y, g, x%,I))), {5, x%,I)).

Hence, it follows from Theorem 4.4 that F is PF“W-continuous. m]

Theorem 4.15. LetF : (Z,7) + (Y, 1) be a normalized PFTM. IfF is PF'AW-continuous and PF"A-
continuous, then, F is PF'W-continuous.

5. Conclusions

In this paper, the definitions of the two standard modal operators O and <, for PFSs and is introduced
two PFMTSs were introduced. Two other new PEFMTSs were examined, which generated new types of
closure and interior operators in the PFTSs, thus differing from those defined initially and aligning with
the specific conditions in the PFMTSs. In these new PEMTSs, the equality in some common conditions
were not satisfied as stated in [8, 10], and thus it needs to be adjusted to either “C” or “2”. The PFMTSs
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constructed in this paper are described as "feeble", denoted by PFFMTSs. For future work, we aim to
develop other PEMTSs and PFFMTSs. Additionally, we will create other operators using integration,
differentiation, and several distinct notions within the proposed PFMTSs. The idea of PEMTSs
builds the framework to address uncertainty, imprecision, and neutrality in these more complicated
systems. PFMTSs could be used in the fields of decision making, artificial intelligence, natural
language processing, robotics, and data mining, thereby exploring its ability to enhance decision-
making processes, improve algorithmic robustness, and enable nuanced data analyses. The future
research on PEMTSs may focus on their application in emerging fields such as quantum computations,
dynamical systems, and hybrid decision-making modules.
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